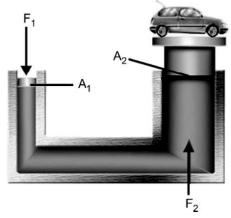
DEBORAH FRANCO FÍSICA T

Exercícios Hidrostática

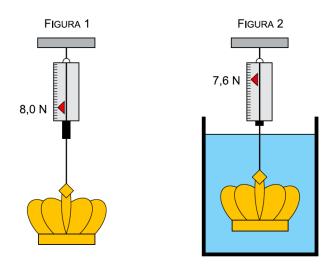

Questão 01 - (PUCCAMP SP) A elevação do nível do mar causa um aumento de pressão no fundo do oceano. Considerando uma região em que as águas oceânicas estejam em repouso, que a aceleração gravitacional seja 10 m/s² e que a densidade da água do mar seja 1,03 g/cm³, o aumento da pressão hidrostática no fundo do oceano causada pela elevação do nível do mar ocorrida no século 20 nessa região foi de, aproximadamente,

- a) $1,75 \times 10^2$ Pa
- b) $6,06 \times 10^2 \text{ Pa}$
- c) $1,75 \times 10^3 \text{ Pa}$
- d) $1,03 \times 10^4 \text{ Pa}$
- e) $6.06 \times 10^4 \text{ Pa}$

Questão 02 - (FCM PB) Um submarino ao mergulhar 250 metros de profundidade em um mar gelado (4º C) acaba submetido a determinada pressão hidrostática. Qual o valor da pressão real a que está submetido esse submarino, sabendo que a densidade da água do mar a 4ºC é 1000 Kg/m³? Dado: Aceleração da gravidade = 10 m/s² e Pressão atmosférica de 1,01·10⁵ Pa.

- a) 3,801·10⁶ Pa
- b) 4,604 · 10⁵ Pa
- c) 2,601 · 10⁶ Pa
- d) 3,210·10⁶ Pa
- e) 1,322 · 10⁵ Pa

Questão 03 - (UNCISAL AL) Em 1652, Blaise Pascal enunciou um princípio muito importante para a Física: "A variação de pressão sofrida por um ponto de um líquido em equilíbrio é transmitida igualmente a todos os pontos do líquido e às paredes do recipiente onde ele estiver contido". O funcionamento de um elevador hidráulico, como o ilustrado na figura, é baseado nesse princípio. A pressão exercida na coluna mais estreita do elevador, onde a área da seção reta é $A_1 = 0.6 \text{ m}^2$, é a mesma transmitida ao outro extremo, onde a seção reta tem área $A_2 = 12 \text{ m}^2$. O valor da pressão é dado pela razão entre o módulo da força e o valor da área onde se aplica a força.



Qual é a equação que relaciona corretamente o módulo da força F₂, |F₂|, com o módulo da força F₁, |F₁|?

- a) $|F_2| = 20.0 \times |F_1|$
- b) $|F_2| = 12.6 \times |F_1|$
- c) $|F_2| = 11.4 \times |F_1|$

- d) $|F_2| = 7,20 \times |F_1|$
- e) $|F_2| = 0.05 \times |F_1|$

Questão 04 - (UNIFESP SP) Para determinar a densidade de uma coroa metálica maciça, foi realizado um experimento em que ela foi pendurada em um dinamômetro ideal por dois modos diferentes: um no ar e outro totalmente imersa na água em equilíbrio contida em um recipiente, de acordo com as figuras 1 e 2, respectivamente. Na primeira situação, o dinamômetro indicou 8,0 N e, na segunda situação, indicou 7,6 N.

Sabendo que a densidade da água é 10^3 kg/m³ e adotando g = 10 m/s²,

- a) represente as forças que agem na coroa na situação da figura 2 e calcule a massa dessa coroa, em kg.
- b) calcule a densidade, em kg/m³, dessa coroa.

Questão 05 - (FPS PE) O submarino nuclear que a marinha brasileira está produzindo deve ter uma massa $m = 6 \times 10^3$ toneladas e um volume aproximado de $V = 9 \times 10^3 m^3$. Suponha que quando o submarino está sendo testado na plataforma de testes, encontra-se parcialmente submerso. Determine a fração do volume do submarino que está submersa. Considere que a densidade da água no local é igual a 10^3 kg/m³.

- a) 1/2
- b) 2/3
- c) 2/5
- d) 1/3
- e) 1/6

Questão 06 - (FCM PB) Considerando o fluxo sanguíneo na veia cava superior como 90cm³/s e tomando como base uma secção de área de 4,5 cm², qual a velocidade de circulação neste vaso sanguíneo?

- a) 405 cm/s
- b) 20 cm/s
- c) 0,22 cm/s
- d) 1 cm/s
- e) 10 cm

Questão 07 - (FCM PB) Quando observamos o sangue fluir na circulação humana do setor capilar para o setor venoso, observamos que mesmo com o aumento do calibre dos vasos em direção às veias, a área geral diminui, mesmo assim o fluxo permanece constante. Considerando o fluxo constante ao longo desse trajeto

@PROF.DEBORAHFRANCO

capilares/veias, qual a área total estimada do setor capilar se sabemos que a velocidade nestes capilares é de 0,05 cm/s e o fluxo no setor venoso é de 83 ml/s?

- a) 4,15 cm²
- b) 15 cm²
- c) 1000 cm²
- d) 1 cm²
- e) 1660 cm²

Questão 08 - (UNIRG TO) O Mar Morto é um grande lago localizado no Oriente Médio e recebe esse nome em razão da grande quantidade de sal que possui. Considerando que a pressão atmosférica seja de 10^5 N/m² e que a densidade da água do Mar Morto seja de 1,24 kg/l, a pressão sobre um mergulhador que desce a 10 metros de profundidade abaixo da superfície será (Admita que | g | = 10 m/s²):

- a) $0.24 \times 10^5 \text{ N/m}^3$;
- b) $1,24 \times 10^5 \text{ N/m}^3$;
- c) $2,24 \times 10^5 \text{ N/m}^3$;
- d) $124 \times 10^5 \text{ N/m}^3$.

GABARITO:

- **01) Gab:** C
- **02) Gab:** C
- **03) Gab:** A
- **04) Gab:** a)0,80 kg; b) $V = 4,0 \cdot 10^{-5} \text{ m}^3$
- **05) Gab:** B
- **06) Gab**: B
- 07) Gab: E
- **08)** Gab: C